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Abstract

It is shown that: If (Xl, X2) is a permutation invariant central convex

unimodal random vector and if A is a symmetric (about 0) permutation
X2

invariant convex set then P{(aX 1, -/-) e A) is nondecreasing as a varies from

0+ to 1 and is nonincreasing as a varies from 1 to - (that is,

P{(alXl,a 2 X2 )eA} is a Schur-concave function of (log a,, log a2 )). Some

extensions of this result for the n-dimensional case are discussed.

Applications are given for elliptically contoured distribution and scale

parameter families.
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1. Introduction and motivation

Let X = (Xl,... Xn) have a density function f which is absolutely

continuous with respect to the Lebesgue measure and denote, for ai > 0, i =

1,... ,n,

(1.1) 0 (a) = {x: lxil < ai , i =

(1.2) D2(a) = {x: Z(xi/ai ) 2 i

the n-dimensional rectangle and ellipsoid (which depend on the vector

a = (ai,...,an)) respectively.

A function ip is said to be Schur-concave in a (respectively

a2  (a a...,a)) if i(a) 4 (b) whenever a>. b (respectively a2> b2)

where *- denotes the majorization relation; see, e.g., Marshall and Olkin

(1979).

* ,It is known (Tony (1982)) that if f(x) is a Schur-concave function of

x then P{X e 0 (a)} (respectively, P{X E D2 (a)}) is a Schur-concave

function of a (respectively, a2 ). Such a result depends on the diversity

of the elements of a and a2 when the arithmetic mean is kept fixed.

Since the volumes (Vol) of D_(a) and 3 2(a) are multiples of
n 2 2
ii ai , it follows that if a> b [a > D ] then
i=1

Vol(D.(a)) i Vol(D_(b)) [Vol(D 2 (a)) . Vol(D 2 (b))] with strict inequality

22
if b[b ] is not a permutation of a[a 2]. Consequently, in the

* inequalities

P (X F 0._(d) P fX !1 _

P(X c 2(,) P{ X 0 2 (1))
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the difference in probability contents could be partly due to the difference

in the volumes of the two sets. In view of this fact Perlman (1982) suggested

that a corresponding result will be of interest if the volumes of the sets are

kept fixed. This can be accomplished by inequalities via the majorization

(log a,. .. , log an)>- (log b1 ,...,log bn).

Such a majorization inequality depends on the diversity of the elements of

a and a2 when the geometric mean is kept fixed.

In this paper we derive such an inequality for a large class of density

functions and a large class of convex sets. Our most general results are

given for the bivariate case. An extension to the n-dimensional case appears

to be difficult [for reasons to be discussed in Section 3] except for some

special cases such as the case of independent identically distributed random

variables or when the underlying joint density is spherically symmetric. The

class of convex sets considered includes D0 and D2 as special cases and

special applications are given for elliptically contoured distributions and

scale parameters families. In all these cases, universal upper bounds on the

probability contents can be given by substituting the values of the ai's by

their geometric mean.

2. The inequalities.

before proceeding we first show that the condition of Scnur-concavity is

no longer adequate for the problem under study.

Example 2.1. Let X = (X1, X2 ) have the uniform density over the region

=--> -
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f(x1,l x 2): lxi1 - x 21 <4, 2 <lx1 + X2 1 4)4

(which is a Schur-concave function of x). Then the probability content of

0 _(a) is zero for a = (1,1) and is positive for all a satisfying

1 -2

In order to derive our inequalities we recall the following

definitions. For two vectors x and y write x > ty if x and y agree

in all but two coordinates, say i and .j, i <j, x.i < x i and x

and yj = x1.

Definition 2.2. Let a = (al. ....,a n) where a 1 <. a a n . 4,e say that

a function p(a, x) is decreasing in transposition (DT; see Hollander,

Proschan and Sethuru. in (1977, 1981)) or arrangement increasina (Al-, see

Marshall and 01kin (1979, Section 6.F)) if

(a) f(an, xii) = f(a,x) for all permutation matrices 7i and vectors

x and a as above,

and

(b) f(a,x) > f(a,y) whenever x>tY

The following result plays a key role in the subsequent theorems.

Theorem 2.3. Let (X1i ... Xn) have a dens~ity f and let A be d subset

of Rn If f and IA (the indicator function of A) are such that
fxl Xn x I Xn. i

~~ire AlI in a adx r

a n

1 anx
n

Xn X1 a
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(log a 1 ,.,log a n) (loy b1,..., log b n]

Proof. Let *and ~,be two n-variate real functions such that

gl~all...,) = xlo-9 (-l,...,-) is AI on (,_~)n x Rn
g1(1~..an Xg*Xn a1  an

and

1 n n (.n.92(XI'o.' al--a n) a(1 .. ,-a-n is AI on R (O)

Then

(2.1) y(a;b) f .. f y 1(a;x) y 2(x;b)dx
-cc -00

is Al on (O,o0)n x (O,_o)n The proof of this statement is the same as the

proof of 6.F.12 of Marshall and 01kin (1979) except that two of the Rnis there

are replaced by (0,oa) n*Substitute y. = xi/bj in the inteyral in (2.1)

to see that the function g in (2.1) is of the form

n b 1  b n(2.2) g(a;tb) i it b) h(-,a .,-i=1 i 1  an

for some function h on (0,oo) n The function hdefined by
b ~,b n (O.n x O.n

h(a;b) h(-,..,-an is Al on (0w 0c).To see it write
na an0_

h(a;b) ( b) g(a;b). Since y(a;b) is Al it follows from LeImma 3.1 of

Hollander, Proschan and Sethuraman (1977) that h(a;h) is AI on

(O,_)n (0,_)n
b b

Since h( is Al on (0,_)n x (0,o)n it follows from 6.F.6 of

Miarshall and Olkin (1979) [replacing one of the R's there by (0,-)] that
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b/a 1 bn/ean

h(e /e ,...,e /e ) is Al on Rn. Thus, from 6.F.3.a of Marshall and

Olkin (1979) it follows that h(ecl,...,ecn) is Schur-concave in c c Rn

That is, the function h(cl,...cn) of (2.2) is Schur-concave in

(log C1 ,...,log Cn).

Denote

0 x x
>(a) - f . ,... x)dx

-00 a~ ann

Put bI ... :.bn = 1 in (2.2) to obtain X(a) = h(al ,...,an-). Since

h(a) is Schur-concave in (log al,...,loy an) it follows that also

x(a) is Schur-concave in (log a1,..., log an). Theorem 2.3 now follows by

setting p(x) _ f(x) and (x) = IA(x). 11

A natural question to ask is how the Al property of Theorem 2.3 is

realted to more familiar and easily checked conditions such as Unimodality and

Schur-concavity. To answer this we recall some definitions from Dharmadhikari

and Jogdeo (1976).

Definition 2.4. A random vector X (or its distribution) is called central

convex unimodal if its distribution is in the closed convex hull of the set of

all uniform distributions on symmetric compact convex bodies in Rn.

Definition 2.5. A random vector X (or its distribution) is calleo ronotone

unimodal if for every symmetric convex set C c n  rid ;vry x f 11. the

quantity P{X a C + kx} is nonincreasing in k -a .

If X has a density f and is central convex unimodal then the set

(x:f(x) > u} is convex and symmetric, that is, X is unimodal according to

Anderson (1955). It is well known (see, e.g., Dharinadhikari and Jodeo



6

(1976)) that every central convex unimodal random vector is monotone

unimodal. Wells (1978) showed that there exist (in R2 ) monotone unimodal

random vectors which are not central convex unimodal.

Theorem 2.6. If (X1, X2 ) with a Schur-concave density f(xl,x 2) is

monotone unimodal, if f(x1, - x2 ) is Schur-concave and if A c R2  is

measurable symmetric (about 0) permutation invariant and convex, then

Pt(-. X , X2) E A} is Schur-concave in (log a,, log a2 ).

Remark 2.7. Dharmadhikari and Joydeo (1976) showed that every monotone

unimodal random vector is symmetric (about 0). From this it follows that the

Schur-concave density f in Theorem 2.6 is symmetric not only about

(Xl x x2 } but also about {(Xl,x 2 ): xI + x2 = 01. Thus f(xa a2,2):x, x2 2 1 2 aI  x a2

cannot be Al in a z (0,-) and x z R2 . However the restriction of f to

{(xlx 2 ): xI + x2 > 0}, or equivalently the conditional density of

(Xl,X 2 ) yiven that XI + X2 > 0, can be Al (see proof of Theorem 2.6 below)

and this suffices to yield the conclusion of Theorem 2.6.

Proof of Theorem 2.6. Let A = A fl {(x 1 ,X2 ): xI + x2  0}. It will be shown

that P{(X-X l -- X ) c AIX + X o 01 which is equal toa1  1' a 2  2 1 2

(2.3) P{(1_ X 1 X2 ) Ix + X 0!a I  a 2  1 2

is Schur-concave in (log al, log a.). Theorem 2.6 then follows from the

syimetry of f(xI,x 2 ) about {(x1 ,X2 ): xI + x2 = 01; see Remark 2.7.

Let B = {(x1 ,x2 ): xI + x2  0}. To prove that (2.3) is Schur-concave in

(1oy al, log a2) it sutfices, by Theorem 2.3, to show tnat

~~. ~ ,- V.~~:::t..>v s.v
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g(xl,x 2) -2f(x 1,x2) 1B(X 1,X2) and I^ (here I and IB  are the
A A

indicator functions of A and B) satisfy

-1 X222
(2.4) y( a , is AI in a (0,-) and x c

and

x I xO2  2 2

(2.5) 1 (a- -,-) is Al in a (0,-) and x c R

Only the proof of (2.4) will be given. The proof of (2.5) is similar. To

prove (2.4) it suffices to show that

(2.6) f(c x1 ,c2x 2 x f(c2xP, c X2) whenever c1 > c2 > 0 and x1 + x2 ? .

Fix c > c, > . First we prove (2.6) wnen x I  x2 > 0. Denote

c1 x +1c.),x9
(yi~ = , C xCX 2 ) and note that (clXlC 2X2 ) - (y1 ,y.,) and

(Yl 'Y2)  =C 2 ix I 2  '-2'1 1 21 22lY19y-

that c 1xl + c2x2 ; c)x1 + Thus

f(c x1, c2x2)
r (y1 ,2 (zy 22nur-coflcavit)

f(c 2 X , C1 X>, : n: ne Un 1 c::),d l it

as was to be shown.

Now assume xI  U > x2  and n .r ion, - - , , ,., ,) is ,iOriOtonu,

unimodal it fol lows that (Xl,-Aq) is ie:lomntjn Unl1ThBlaI. .S 'lensity n i,

given by h(x1 ,x2 ) 
=  f(x1 ,-x'(_  • y ,is)uy ;, tnY stvit, Or -Y, ) is

Schur-concave. llence, it to] lows tr'rn tho price1i1n; :r, Tent that ,h ,en
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x1 > -x2 > 0,

h(cIxl' - c 2x 2 ) < h(c 2xl,-C1x 2 ) ,

that is,

f(C1 X1 ,C 2 X2 ) < f(c 2 x 1 ,C 1 x 2 )

as was to be shown.

When x2 > x1 > 0 (and x1 + x2 > 0) it can be shown as above toat

*r (2.6) holds.II

It is known that a permutation invariant, central convex unimodal density

is Schur-concave (see, e.g., Marshall and Olkin (1974) or Tong (1980), p.

108). Also it is clear (using Remark 2.7) that (XIX 2 ) has a permutation

invariant central convex unimodal density if and only if (XI,-X.)) has. Thus

we obtain the following result as a corollary of Theorem 2.6.

Theorem 2.8. If (XI,X 2) has a permutation invariant central convex unimodal

density and if A C R2  is measurable symmetric (about 0) permutation~~~X 1 X 2 A SShronaei

invariant and convex, then P{(-9-- ) : A) is Schur-concave in
1 2

(log a,, log a2 ).

Remark 2.9. Note that the class of density functions (and sunsets) in Theorem

2.3 is a proper subclass of Schur-concave function (and sm hsets). The

additional condition there seems to be symmetry (about )) and unimodal ity, and

the latter is not met for the density in Example 2.1.
n

If X (X X has a density of the form f=(X x)
* 1n ir1

- V Vi~ -



[that is, X is spherically symmetric] and if g is nonincreasing then X is

central convex unimodal. In this case, for a particular <ind if sets A, we

can extend Theorem 2.3 to the n-dimensional case 'n

Theorem 2.10. If X = (XI  ..... Xn) has a density f of -,P rr _ =
n
g Y(x i )) for some nonincreasing j nd if *

n
A = {x: L y(xi) x} for some x > 0 wnere and rofl-rolarive,

i=1

symmetric about 0, convex and nondecreasing on ,
X1 Xn

P ... , -) E A) is Schur-concave in (loa
a 1 an

Proof. It is possible to prove this result Dy sno,.qo ,11ro I :S > -r

proof of Theorem 2.6) that the conditional density or K V-11
n

and the indicator function of A /I {x: _ x. ati , ;noit~on of

Theorem 2.3. However here we use a conditionin,. ar > n i ', :ne

desired result from Theorem 2.8.

. First notice tnat it suffices to o)rove zne S:'ur-jo nc vi y

: A} in (log a,....log an) y fiig -, , and snowino
a a n)
1 n

that this quantity is Schur-concave in (log ai, lo >.,

For fixed x3 ,...,xn and a3,...,an, consioer

X1  X2  X
(2.7) a 1 a29 -) C '' ..a , a 2 ' n

which can be written as

x x x

1 3

* wfle re

-P 0
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T(y3,...,yn) = {(xlx 2 ): (XlX29Y3,...,yn) E A}
n

= {(x 1 ,x2): (xI) + (x2 ) < X - (Yi)}.
i=3

The conditional density of (XIX 2 ) given Xi = xi, i=3,...,n, is of the

form h(p(x1 ) + p(x2)) where h is nonincreasing. Hence it is permutation
x3  x

invariant central convex unimodal. Also, ( is measurable
3 n

symmetric permutation invariant and convex. Hence by Theorem 2.8, the

quantity in (2.7) is Schur-concave in (log a,, log a2).

The family of functions which are Schur-concave in (log a,, log a2) is a

convex cone, hence the unconditional probability P{(a-' .... -) F A} is

Schur-concave in (log a,, log a2 ).

Remark 2.11. The assumption that X is absolutely continuous in Theorems

2.6, 2.8 and 2.10 is not essential. If X does not have a density then it

*can be approximated by a sequence of absolutely continuous random vectors

which have the required properties (such as symmetry about 0, permutation

invariance and unimodality) and the conclusions of Theorems 2.6, 2.8 and 2.10

will apply to X by weak converyence.

I  Xn

Remark 2.12. Since P{((-,•.. ,-) £ A) is a Schur-concave function of
a 1 anSn

(log a1 ,...,log an) if and only if P{(a 1 X1 .... an Xn) Al,

P i(X, Xn) ; A(al,..,an)} and P{XI ..... 1 ) A . are

(where A(al,•.•,an) = {(a1X , ... anxn (X19 .. x.9 ) A)), it is seen that,

under the conditions of Theorems 2.3, 2.6, 2.;2 and 2.10 (see also RemarK

2.11), all these probability contents are Schur-concave functions of

(loy a, .... log an).



11

3. Some applications.

In this section we study some applications of Theorem 2.3 and 2.10 and

discuss the possibility of n-dimensional generalizations (apart from Theorem

2.10).

Application 3.1. A class of convex sets which is of special interest is of
2

the form A = {(xl,x 2): #(xi) 4 A} for some x > 0 and a function
i=l

which is nonnegative, symmetric about 0, convex and nonoecreasino on .

In particular,

2
Dk V{(XX2): x k 4 6}, .=...k42

are in this class.

Karlin and Rinott (1983, Theorem 24) snowed, among otner tninjs, :nat 1,"

the nonneyative random vector X has a Schur-concave density f 'en

(3.1) 1 (k- iK', E D
aI  a2

is a Schur-concave function of (al,a 2 ) [ai>O,i=,2] fr < I. A related

question is whether or not

(3.2) a1 2 k = ... ,

dre Scnur-concave function ot (log aI Iog a2 ). A si;'ple :ioulfication of

Example 2.1 [considering the conditional distriDution of (X1,X2 ) there, given

X 0., X. 0] shows that the answer is no under the condition of Schur-

concavity of f alone. However, Theorems 2.., and 2.13 say that under the
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(stronger) onditions of symmetry and unimodality of f, the answer to this

question is positive. Notice that, by Marshall and Olkin (1979, page 63,

Table 2, (vi)), it follows that Schur-concavity of (3.2) in (log a1 ,log a2)

implies Schur-concavity of (3.2) in (al,a 2 ) [ai > 0, i = 1,2]. The Schur-

concavity of (3.2) in (al,a 2) is a stronger property than the Schur-concavity

of (3.1) in (al,a 2 ) for k = 2,4,6,8, .... (again apply (vi), Table 2, page

63 in Marshall and Olkin (1979)).

Application 3.2. (Elliptically contoured distributions). If f is of the

form f(xl,x 2 ) = g((xlx 2 ) -l(xlx 2)') where g is nonincreasing and

E = (aij) has equal diagonal elements and is positive definite, then the

conditions on f in Theorem 2.8 are satisfied. Thus, inequalities can be

obtained through the Schur-concavity property in (log a1 , log a2 ). In

particular, when combining with Application 3.1, one has the following

* result: If (X1, X2) is elliptically contoured distributed then, for 0

and D2 defined in (1.1) and (1.2),

P{(XI,X 2) E D (a, a)} and P{(XI,X 2 ) D2 (a, I)j

..

are decreasing as a varies away from 1. Consequently, when the area of such a

rectangle (or ellipse) is fixed, then the maximum probability content is

obtained when the rectangle becomes a square (the ellipse becomes a circle).

For D0 this result has been obtained by Kunte and Rattihalli (1934).

Application 3.3. (Scale parameter families). Let o = (u1,U2),

8i > 0 (i=1,2), be a parameter vector and let (YIY 2 ) have density

go(yly 2 ) = (01 u2 )1 f(y 1 /O1 , y2 /92 ). If f and A satisfy the conditions

in Theorem 2.8 then P{(YI,Y2) A) is a Schur-concave function of
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(log 61, log 62).

Application 3.4. (Peakedness in bivariate distributions). If f(xl,x 2 )

satisfies the conditions in Theorem 2.8 then, for ai > 0 (i=1,2),
2

P{i l aiX i i 4 x} is a Schur-concave function of (log al, log a.) for all
12 '

X > 0; that is, if (log a,, log a2 )>. (log bI , log b2 ) then a iX is
2 i=1

more peaked than j b.X. This result is to be compared with a result of
i1 1 n

Proschan (1965) who showed that P{I aiXil 4 X) is Schur-concave in a
i=1

whenever Xl,...,Xn are independent with a common symmetric (about 0) log-

concave density.

Application 3.5. (Multivariate normal distributions). Let X be an n x 1

random vector distributed as Nn (p,z). Das Gupta and Rattihalli (1984)

considered the problem of selecting the region of largest confidence level for

1 from all regions of fixed Lebesgue im]easure, based on a single

ooservation X, 7 being a known positive-definite matrix. 'f une restricts

attention to the class of translation-invariant regions then, it follows from

Neyman-Pearson lumma, that such an optimal region is given by the correspoding

concentration ellipsoid. Das Gupta and Rattihalli (1934), however, focused

their attention only to a class or rectangular regions of fixed volume. In

particular, they showed that if z = g- then, subject "-o ;a = - (c is
i =1

a constant), the d ra) adn 1ity X I , is maximized '.inen ,I= .. =a
I/n= c . Tn/s nact tal 1 s iso from Thieorein 2.10 an i not just for t"e

rectangjular re-jmn J tl .)ut also tar tne olliptical retjio, 1.)(i).

When I , ..... .n then, ;inject to a. c, the

probabilities < 3. (a), . = J ,4 ..... ', ,re maximized when a. = aia*
n 1

where a* c( ; )- . his result ;or the case K , has also been
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obtained by Das Gupta and Rattihalli (1984).

It is interesting to observe a difficulty for generalizing Theorem 2.8 to

the n-dimensional case. For proving results concerning Schur-concave density

functions (or random variables) one property is that: If the density

f(xi,...,xn) of (XI,...,Xn) is a Schur-concave function of (x1,...,xn)

then the conditional density of (Xl,X 2 ) given Xi = xi , i = 3,...,n, is a

Schur-concave function of (xl,x 2) for every fixed (x3,...,xn);

consequently the proof can be given for n = 2 first and then unconditioning

as in the proof of Theorem 2.10. But in the current problem the symmetry

condition (about 0) of f(xl,...,xn) does not yield the same property (hence

we cannot justify (2.6)) for the conditional density of (X1,X2 ) given

(X3,..Xn). Thus we do not yet know whether or not the following conjecture

is true:

Conjecture. For n > 2, if f(xl,...,xn) [the density of (XI,...,Xn)] is

permutation invariant and central convex unimodal, and if A C Rn is

measurable, symmetric about 0, permutation invariant and convex, then
X1 XnP{(a-,..., a) A} is a Schur-concave function of (log a1,..., log an).1 n
To remove the difficulty mentioned above one can, of course, consider the

case in which XI,...,Xn are independent and in which (as in the proof of

Theorem 2.10) X(x3,...,x n ) is symmetric aout (0,0) and convex (such asi n k
the class of convex sets {x: xk < 1} for k = 2, 4, 6, 8,...,). In~i=l
particular, if XI,...,Xn are independent identically distributed random

variables whose common density is symmetric about 0 and log-concave, then

the conditional density of (XI,X 2 ) given (X3 ,.... Xn) satisfies the

conditions in Theorem 2.8. In this special case, if the set A depends on

(xl,...,xn) only through (IxJI,...Ix,,), then inequalities for

Mi 2L M
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x1  x

PC(X ',.' ' 'L )n . A} can be derived by applying either Theorem 2.3 or

Proposition 11.E.5.e of Marshall and Olkin (1979). In particular, if

XI,...,X n are independent, identically distributed normal variables with

mean 0, then the probability contents of D (a) and D2 (a), defined in

(1.1) and (1.2) are Schur-concave functions of (log aI,...,log an). The

latter is the Okamato-Marshall-Olkin inequality (Marshall and Olkin (1979, P.

303)).

A

*1

A'

I
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